Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.

Identifieur interne : 000521 ( Main/Exploration ); précédent : 000520; suivant : 000522

Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.

Auteurs : Kaavya A. Mohanasundaram [Australie] ; Naomi L. Haworth [Australie] ; Mani P. Grover [Australie] ; Tamsyn M. Crowley [Australie] ; Andrzej Goscinski [Australie] ; Merridee A. Wouters [Australie]

Source :

RBID : pubmed:25805991

Abstract

Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state.

DOI: 10.3389/fphar.2015.00001
PubMed: 25805991
PubMed Central: PMC4354306


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.</title>
<author>
<name sortKey="Mohanasundaram, Kaavya A" sort="Mohanasundaram, Kaavya A" uniqKey="Mohanasundaram K" first="Kaavya A" last="Mohanasundaram">Kaavya A. Mohanasundaram</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haworth, Naomi L" sort="Haworth, Naomi L" uniqKey="Haworth N" first="Naomi L" last="Haworth">Naomi L. Haworth</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grover, Mani P" sort="Grover, Mani P" uniqKey="Grover M" first="Mani P" last="Grover">Mani P. Grover</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crowley, Tamsyn M" sort="Crowley, Tamsyn M" uniqKey="Crowley T" first="Tamsyn M" last="Crowley">Tamsyn M. Crowley</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia ; Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organisation Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia ; Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organisation Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goscinski, Andrzej" sort="Goscinski, Andrzej" uniqKey="Goscinski A" first="Andrzej" last="Goscinski">Andrzej Goscinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wouters, Merridee A" sort="Wouters, Merridee A" uniqKey="Wouters M" first="Merridee A" last="Wouters">Merridee A. Wouters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25805991</idno>
<idno type="pmid">25805991</idno>
<idno type="doi">10.3389/fphar.2015.00001</idno>
<idno type="pmc">PMC4354306</idno>
<idno type="wicri:Area/Main/Corpus">000545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000545</idno>
<idno type="wicri:Area/Main/Curation">000545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000545</idno>
<idno type="wicri:Area/Main/Exploration">000545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.</title>
<author>
<name sortKey="Mohanasundaram, Kaavya A" sort="Mohanasundaram, Kaavya A" uniqKey="Mohanasundaram K" first="Kaavya A" last="Mohanasundaram">Kaavya A. Mohanasundaram</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haworth, Naomi L" sort="Haworth, Naomi L" uniqKey="Haworth N" first="Naomi L" last="Haworth">Naomi L. Haworth</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grover, Mani P" sort="Grover, Mani P" uniqKey="Grover M" first="Mani P" last="Grover">Mani P. Grover</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crowley, Tamsyn M" sort="Crowley, Tamsyn M" uniqKey="Crowley T" first="Tamsyn M" last="Crowley">Tamsyn M. Crowley</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia ; Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organisation Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia ; Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organisation Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goscinski, Andrzej" sort="Goscinski, Andrzej" uniqKey="Goscinski A" first="Andrzej" last="Goscinski">Andrzej Goscinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wouters, Merridee A" sort="Wouters, Merridee A" uniqKey="Wouters M" first="Merridee A" last="Wouters">Merridee A. Wouters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, Faculty of Health, Deakin University Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in pharmacology</title>
<idno type="ISSN">1663-9812</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25805991</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1663-9812</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in pharmacology</Title>
<ISOAbbreviation>Front Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>1</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fphar.2015.00001</ELocationID>
<Abstract>
<AbstractText>Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mohanasundaram</LastName>
<ForeName>Kaavya A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haworth</LastName>
<ForeName>Naomi L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grover</LastName>
<ForeName>Mani P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crowley</LastName>
<ForeName>Tamsyn M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia ; Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organisation Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goscinski</LastName>
<ForeName>Andrzej</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wouters</LastName>
<ForeName>Merridee A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, Faculty of Health, Deakin University Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Pharmacol</MedlineTA>
<NlmUniqueID>101548923</NlmUniqueID>
<ISSNLinking>1663-9812</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AKT evolution</Keyword>
<Keyword MajorTopicYN="N">CD4 evolution</Keyword>
<Keyword MajorTopicYN="N">cross-strand disulfide</Keyword>
<Keyword MajorTopicYN="N">disulfide evolution</Keyword>
<Keyword MajorTopicYN="N">exaptation</Keyword>
<Keyword MajorTopicYN="N">forbidden disulfide</Keyword>
<Keyword MajorTopicYN="N">post-translational cysteine modification</Keyword>
<Keyword MajorTopicYN="N">redox-active disulfide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25805991</ArticleId>
<ArticleId IdType="doi">10.3389/fphar.2015.00001</ArticleId>
<ArticleId IdType="pmc">PMC4354306</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2007 Apr 3;46(13):3942-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2011 Jan 26;11:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2007 Oct;8(5):484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1987 Feb 24;404(1-2):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3567585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2011 Aug;43(8):1079-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1960;29:45-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14400122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2011 Mar 29;2011:bar009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 24;285(52):40793-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 27;277(52):50579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12218051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(2):e4345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19190775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Apr;5(4):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Nov 15;252(2):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16213671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 1981;34:167-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7020376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 20-1985 Jan 2;312(5996):763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Jan;8(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Nov 15;169(10):5392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Nov 9;43(44):13981-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D292-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24153109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Aug;17(8):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 10;433(7026):633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15660107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Apr 21;23(8):1709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:333-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2009 Nov 30;61(14):1234-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19733603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Jul;41(3):657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3891096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 Jun;41(6):1269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Jul 21;37(29):10345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Apr 20;129(2):333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Nov;14(11):1701-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Immunol. 1989;44:265-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2493728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1969 May 16;164(3881):788-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5767777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jan;11(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Apr 11;289(15):10455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Jan;1(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9659913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1977 Nov 25;10(2):155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">592421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2008 May;66(5):446-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Simul. 2007 May;33(6-8):475-485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2003 Apr;33(4):970-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Sep 15;151(2):261-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7338898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2011 May;25(5):1746-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Aug;3(8):727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 1;409(6820):614-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11214319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Sep 15;177(6):3939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 May 15;4(5):613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8736558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Oct 6;29(19):3330-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20834232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jan;12(1):53-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19634988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Oct 6;482(3):237-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2006 Dec;40(12):1239-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Aug;18(8):1745-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19598234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 4;273(49):32878-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9830036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(22):6505-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 4;275(31):23685-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10818100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1760(3):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1999 Jul;12(7):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 Feb;1(2):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Apr;5(6):1634-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15765494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 18;275(7):4827-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10671517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Mohanasundaram, Kaavya A" sort="Mohanasundaram, Kaavya A" uniqKey="Mohanasundaram K" first="Kaavya A" last="Mohanasundaram">Kaavya A. Mohanasundaram</name>
</noRegion>
<name sortKey="Crowley, Tamsyn M" sort="Crowley, Tamsyn M" uniqKey="Crowley T" first="Tamsyn M" last="Crowley">Tamsyn M. Crowley</name>
<name sortKey="Goscinski, Andrzej" sort="Goscinski, Andrzej" uniqKey="Goscinski A" first="Andrzej" last="Goscinski">Andrzej Goscinski</name>
<name sortKey="Grover, Mani P" sort="Grover, Mani P" uniqKey="Grover M" first="Mani P" last="Grover">Mani P. Grover</name>
<name sortKey="Haworth, Naomi L" sort="Haworth, Naomi L" uniqKey="Haworth N" first="Naomi L" last="Haworth">Naomi L. Haworth</name>
<name sortKey="Wouters, Merridee A" sort="Wouters, Merridee A" uniqKey="Wouters M" first="Merridee A" last="Wouters">Merridee A. Wouters</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25805991
   |texte=   Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25805991" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020